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Abstract
It has been suggested that the ecological impact of crickets as a source of dietary protein is

less than conventional forms of livestock due to their comparatively efficient feed conver-

sion and ability to consume organic side-streams. This study measured the biomass output

and feed conversion ratios of house crickets (Acheta domesticus) reared on diets that var-

ied in quality, ranging from grain-based to highly cellulosic diets. The measurements were

made at a much greater population scale and density than any previously reported in the

scientific literature. The biomass accumulation was strongly influenced by the quality of the

diet (p<0.001), with the nitrogen (N) content, the ratio of N to acid detergent fiber (ADF) con-

tent, and the crude fat (CF) content (y=N/ADF+CF) explaining most of the variability be-

tween feed treatments (p = 0.02; R2 = 0.96). In addition, for populations of crickets that

were able to survive to a harvestable size, the feed conversion ratios measured were higher

(less efficient) than those reported from studies conducted at smaller scales and lower pop-

ulation densities. Compared to the industrial-scale production of chickens, crickets fed a

poultry feed diet showed little improvement in protein conversion efficiency, a key metric in

determining the ecological footprint of grain-based livestock protein. Crickets fed the solid

filtrate from food waste processed at an industrial scale via enzymatic digestion were able

to reach a harvestable size and achieve feed and protein efficiencies similar to that of chick-

ens. However, crickets fed minimally-processed, municipal-scale food waste and diets com-

posed largely of straw experienced>99%mortality without reaching a harvestable size.

Therefore, the potential for A. domesticus to sustainably supplement the global protein sup-

ply, beyond what is currently produced via grain-fed chickens, will depend on capturing re-

gionally scalable organic side-streams of relatively high-quality that are not currently being

used for livestock production.
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Introduction
Both within the scientific community [1–8] and more broadly [9–12], insect metabolism has
been proposed as a potential mechanism for supplementing the protein demands of a growing
human population while reducing the environmental impact associated with current systems
of livestock production. It has been estimated that livestock production consumes 30% of
crops, 8% of freshwater resources, produces as much as 18% of greenhouse gas (GHG) emis-
sions [13], and greatly contributes to the global misallocation of reactive nitrogen (N) [14]. In
addition, protein production must double by 2050 due to increases in human population and
per capita demand for protein products [13][15]. If this demand is met through livestock pro-
duction, GHG emissions are predicted to increase 39%, reactive N mobilization will increase
36%, and biomass appropriation will increase 21% by 2050 (relative to year 2000 levels) [15].
Such trends will exacerbate environmental pollution attributable to livestock production [13]
and increase the cost of protein relative to today’s prices [16].

Crickets (Orthoptera; Gryllidae) are among the most widely cultivated insect species. They
are consumed directly by humans in many regions of the world, and have been raised on an in-
dustrial scale in Western countries for decades, primarily as a source of feed for insectivores in
captivity (as domestic pets or at zoos) [1]. Because they utilize ambient energy for their meta-
bolic reactions, have shorter generation time, and possess a greater harvestable protein portion
than poultry, swine, and beef, crickets have been reported to recover crude protein more effi-
ciently than these protein sources [1][8][17]. In addition, crickets directly emit a fraction of
the GHG [18] and directly consume orders of magnitude less water than some vertebrate
livestock [19][20].

Nevertheless, as with most livestock production, commercial cricket production relies on
grain products as a feed source. Because the environmental impacts associated with livestock
production are in large part a function of the resources required to produce the grain products
that poultry, swine and beef consume[13][19][21], if cultivated on a grain-based diet, the envi-
ronmental benefits of cultivating crickets as an alternative protein source will be mostly defined
by their improved feed conversion efficiency for grain products.

However, it has been suggested that crickets might also be successfully cultivated on organic
side-streams [17]. Roughly one third of the food produced for human consumption, 1.3 billion
tons per year, is lost or wasted [22]. Of that, 222 million tons are consumer generated waste in
industrialized countries [22]. To illustrate the magnitude of the potential protein embodied
in this waste stream: if the estimated 2.2 million (dry) tons of food waste produced annually in
the state of California [23] were recovered as protein via insect metabolism at the rates reported
by Collavo et al. [17], approximately 210,000 tons of dietary protein would remain directly in
the food system. Protein-capture benefits aside, GHG emissions that result from food waste de-
composition in landfills [24][25] could be drastically reduced if waste streams were diverted
via insect metabolism.

In addition to the data reported by Collavo et al. [17], other investigators have reported sim-
ilarly efficient conversion of feed to protein by a variety of insect species [6][8][17][26–28].
However, the contexts in which these results were measured do not generally reflect the scale
or the degree of control likely to resemble an economically viable production process. In addi-
tion, population densities in these studies were generally low, suggesting that, while the conver-
sion efficiencies reported may be accurate on an individual basis, they may or may not apply to
production environments with high-density insect populations. Validating and/or revising
feed and protein conversion efficiencies for populations of crickets reared at an economically
relevant production scale and density is an essential step to accurately assessing their potential
to serve as an alternative source of dietary protein. Further, determining the feed and protein
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conversion efficiencies of scalable, organic side-streams is a necessary step to determining the
potential for crickets to be used as a protein recovery/recycling pathway, especially in protein-
poor regions of the world.

Therefore, the objectives of this study were to: 1) measure the biomass and protein capture
from feed substrates that varied in digestibility and N content at a production scale of econom-
ic relevance using high-density populations of the common house cricket (Acheta domesticus
(L.) [Orthoptera: Gryllidae]); 2) develop a quantitative metric to explain the relationship be-
tween feed quality and cricket biomass gain; and 3) compare feed and protein conversion effi-
ciencies of crickets fed a variety of diets to those of conventional livestock.

Methods
In a controlled-environment greenhouse located at the University of California, Davis, 15 ex-
perimental units were organized in randomized complete blocks with 5 treatments and 3 repli-
cations per treatment. From 14 d after hatching until they were either harvested or experienced
complete mortality, A. domesticus populations were administered the following 5 feed treat-
ments ad libitum: 1) a 5:1 ratio of non-medicated poultry starter feed and rice bran (Poultry
Feed-PF); 2) the solid, pasteurized, post-process filtrate from a proprietary, aerobic enzymatic
digestion process [29] that converts grocery store food waste into 90% liquid fertilizer and 10%
solids (the portion used in the experiment) (Food Waste 1-FW1); 3) minimally-processed,
post-consumer food waste collected from municipalities throughout California’s Bay Area.
This is an abundant, heterogeneous substrate that is typically collected and composted at an in-
dustrial scale [30] (Food Waste 2-FW2); 4) a 1:1 ratio of wheat and maize silage prepared at
an industrial scale as dairy cow rations and containing approximately 50% non-grain above-
ground biomass (straw) (Crop Residue 1-CR1); and 5) a 2:1:1 ratio of poultry manure, wheat
straw and rice straw silage prepared according to the principals in Oji et al. [31] (Crop
Residue 2-CR2).

The experimental units were modified gaylord shipping boxes, which have the footprint of
standard international shipping pallets [1.2m (L) x 1.0m (W) x 0.61m (H)]. The interior
of each enclosure was lined with a 4mm clear plastic liner and covered with 122cm x 137cm of
nylon mosquito netting to serve as a physical barrier to entrance or exit. To prevent cannibal-
ism and stress-related mortality, 96 egg cartons, 30cm x 30cm in size, were placed on-edge
around the periphery of each box. This provided approximately 172800cm2 of crawl-able sur-
face area. Access to water was provided by 2 quart-sized poultry water dispensers with cotton
and gravel inserted in the dispensing basin to prevent the drowning of newly hatched nymphs.
Sides of the water dispensers were sanded to provide purchase for the crickets to crawl vertical-
ly. Misting tips with check valves to prevent dripping were affixed at the top interior of each en-
closure. To maintain acceptable humidity and provide a dispersed, alternative water source for
the large population of crickets, these tips provided pulses of water aimed at the center of the
enclosure at automated intervals. In keeping with Clifford et al. [20], temperature (T) and rela-
tive humidity (RH) within the greenhouse were maintained at 29.0 ± 2.1 standard deviation
(SD) °C and 67.2 ± 14.7 SD %, respectively, over the course of the experiment. Light was pro-
vided 24h as in Nakagaki et al. [8].

An egg substrate from Timberline Fisheries [32] consisting of approximately 50,000 A.
domesticus eggs with a hatch rate of 70% was placed into each of the enclosures. The egg sub-
strate was maintained between 80–90% humidity until eclosion. Once eclosion was observed,
the substrate was misted twice daily until the nymphs had fully emerged.

Populations in each experimental unit were fed an equivalent diet ad libitum for two weeks
post-eclosion. This consisted of the PF1 treatment plus 5% active dry yeast on a dry matter
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(DM) basis, as suggested by Patton [33]. Absolute biomass gain is small during this early devel-
opmental period, yet growth rates in the early developmental stages can affect growth rates
throughout the life cycle [34][35]. As such, delaying the initiation of the feed substrate treat-
ments until 14 d after hatching ensured that all populations had equivalent metabolic capacity
entering the linear portion of their growth phase. At 14 d after emergence, the 5 feed treatments
described above, with a composition detailed in Table 1, were introduced.

Fresh weights of all input feed substrates were recorded at the time of feeding. A representa-
tive subsample of each substrate was then dried at 60°C until reaching a constant weight to de-
termine its moisture content (MC). The same subsample was then analyzed for constituents
that are commonly used to assess feed quality for livestock nutrition [36]. These included total
N (N), crude protein content, acid detergent fiber content (ADF), crude fat content (CF), and
ash content, which were determined according to AOAC Official Methods 972.43, 990.03,
973.18, 2003.05, and 942.05, respectively [37]. The same measurements were made on the un-
consumed biomass of the FW2 treatment at the end of the experiment.

Population growth was monitored every 3 to 4 days by counting and weighing a random
sample of 70 individuals from each experimental unit. Because population biomass and mortal-
ity are correlated and affected by feed quality [17], the treatments were not harvested simulta-
neously. Rather, treatment-specific harvests were timed to maximize the total protein output
per population based on observed changes in the relationship between biomass per individual
over time and estimates of population density. This was accomplished by counting subsets of
populations on a unit area basis. For the treatments in which a harvest of the entire population
was possible (PF and FW1), all the crickets were extracted from the experimental unit and
weighed on a wet weight basis. Subsequently, DM and protein content were determined, as de-
scribed above, for a representative subsample (5% of wet weight) of the harvested population.
Feed conversion ratios (FCR) were calculated as the proportion of DM fed to fresh weight har-
vested. Protein conversion efficiency (PCE) was calculated as the protein content measured in
the harvested biomass, expressed as a percentage of the protein in the input feed substrate.

The relationship between feed quality and biomass gain was analyzed for data recorded 30 d
after hatching. This date was chosen for analysis because it represented the latest measurement
interval at which a majority of the treatments were still demonstrating positive biomass gains,
thereby minimizing potentially confounding effects such as cannibalism. Linear models were
fit to the data using the “lm” package in R [38]. First, a significant treatment effect was con-
firmed via ANOVA. Subsequently, models containing biomass per individual (as the response

Table 1. Composition and biomass of feed treatments.

Treatment

PF FW1 FW2 FW2end CR1 CR2

Total input biomass, dry weight (g) 15027 6109 6270 — 1447 608

± 961 ± 272 ± 66 ± 38 ± 1

%N 4.0 4.6 2.2 2.2 1.5 1.4

%ADF 5.1 24.7 41.6 60.1 25.3 50.1

%CF 9.5 19.3 15.8 2.5 2.8 1.1

%Ash 9.2 7.2 21.4 28.6 6.4 32.8

Dry weight ± standard error (g) and percent composition of nitrogen (N), acid detergent fiber (ADF), crude fat (CF) and ash in the feed inputs of the various

experimental treatments prior to their introduction to the A. domesticus populations. Also included is the percent composition for the same constituents

measured at the end of the experiment in the FW2 treatment. See [36] for explanation of terms.

doi:10.1371/journal.pone.0118785.t001
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variable) and feed substrate N, ADF, CF, ash content, and their interactions (as independent
variables) were fit iteratively to determine the most parsimonious model. Mean square error,
F-values, p-values, and R2-values were determined for the final model via ANOVA.

Results and Discussion
Concentrations of N, ADF, CF and ash varied widely across the feed treatments (Table 1). The
poultry feed treatment (PF), which was composed primarily of maize and soy grain products,
was similar in composition to diets fed to populations of A. domesticus by Nakagaki et al. [8]
and Patton [39] and served as the control. It contained only 5.1% ADF, which was between 10
and 21% of the ADF concentrations in the other feed treatments. In addition, the PF treatment
had among the highest N (and, therefore, crude protein: AOAC 990.03 [37]) concentration,
with 182%, 266% and 286% of the N concentrations in the FW2, CR1, and CR2 treatments, re-
spectively. The post-process filtrate from the enzymatic digestion of food waste (FW1) con-
tained a slightly higher N concentration than the PF treatment (15%) but also contained a
484% higher concentration of ADF. The unprocessed, municipal-scale food waste (FW2) con-
tained among the highest concentrations of ADF, CF and ash and substantially less N than the
PF and FW1 treatments (Table 1). The CR1 and CR2 treatments, which were each comprised
of approximately 50% non-grain, aboveground biomass from grain crops (straw), contained
similarly low relative concentrations of N and CF (Table 1). What differentiated these treat-
ments from each other was the higher ADF and ash contents in CR2 than CR1 (198% and
513%, respectively), resulting from the inclusion of poultry manure in the ensiling process.

Cricket growth rates, biomass accumulation (p<0.001), and population viability were
strongly determined by the food substrate composition. Populations fed the PF treatment, ex-
perienced a 4574% gain in biomass (fresh weight, with moisture content (MC) = 71.9 ± 0.4
standard error (SE) %) per individual between d 14, when the feed treatments were adminis-
tered, and d 37, when crickets in this treatment were harvested (Fig. 1). This represents a
growth rate of 13.2 ± 0.3 SE mg i-1 d-1 over the treatment period and an overall growth rate of
8.4 ± 0.2 SE mg i-1 d-1, which is in close agreement with Patton [39] for crickets fed a similar
diet. Total population biomass for the crickets in the PF treatment was 10235 ± 746 SE g
(Fig. 1), or 8529 g m2–1 and 13982 g m3–1. Populations fed the FW1 treatment also demonstrat-
ed steady biomass gain and grew to a harvestable size. Individuals in this treatment experienced
a 2583% gain in biomass between d 14 and d 43 (Fig. 1), representing growth rates of 7.7 ± 0.8
SE mg i-1 d-1 for the treatment period and 5.4 ± 0.5 SE mg i-1 d-1 overall. The final population
biomass in the FW1 treatment was 3217 ± 233 SE g (Fig. 1), or 2681 g m2–1 and 4395 g m3–1.
None of the populations fed the FW2, CR1 or CR2 treatments survived to a harvestable size.
From d 14 until d 26, individuals in the FW1, FW2 and CR1 treatments had similar biomass
gains (Fig. 1). However by d 30, biomass per individual was declining in the CR1 treatment
and was unchanged in the FW2 treatment, whereas individuals in the FW1 treatment had near-
ly tripled in size (Fig. 1). Further, estimates of population density were negative for the CR1
treatment by d 22 and by d 30 for the FW2 treatment, and these populations each experienced
>99% mortality by d 40 and d 43, respectively. Populations fed the CR2 treatment demonstrat-
ed very little growth and had experienced>99% mortality by d 22 (Fig. 1).

The change in constituent concentration of the municipal-scale food waste treatment
(FW2) between the initiation and conclusion of the experiment gives an indication about
which fractions of this substrate were digestible to the populations in this treatment. The crude
fat concentration decreased from 15.8% to 2.5%, while the N content remained unchanged,
and the ADF and ash concentrations increased from 41.6% to 60.1% and from 21.4% to 28.6%,
respectively. Therefore, it seems probable that the populations in the FW2 treatment were able
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to survive for a limited period and achieve some biomass gain from the lipids present, but that
the protein in the substrate was largely inaccessible, and the fibers and ash were indigestible.
Although substances such as marrow from bone fragments, which have a high N concentra-
tion, were observed to be completely consumed, they made up such a small proportion of the
overall biomass that this change was neither measureable nor sufficient to support the protein
requirements of the population. This observation, combined with the unchanged N concentra-
tion from the beginning to the end of the experimental period, indicates that the populations in
the FW2 treatment were likely protein-starved.

As indicated by analysis of the biomass response at d 30 as a function of the feed substrate con-
stituents (Fig. 2; Table 2), the N concentration of the substrate was the primary determinant of bio-
mass gain. On its own, the N content explained 68% of the variation across treatments (p< 0.001),
and the ratio of N to ADF explained another 28% of the overall treatment variability (p< 0.001)
(Table 2). The CF content explained a small (4%) but significant (p< 0.01) portion of the overall
treatment effects (Table 2). The ash content did not significantly affect the biomass response be-
tween treatments. However, this may be due to that fact that the feed substrates for the various
treatments were fed ad libitum. If a substrate were more limiting to the population as a whole, it is
possible that the ash content could factor more prominently. The most parsimonious model to pre-
dict biomass response from the range of constituents measured in the feed treatments is:

y ¼½N=ADF�þCF

where N = proportional N content, ADF = proportional ADF content, and CF = proportional CF
content, significant at p = 0.02 with an R2 = 0.96 (Fig. 2; Table 2). Because N, ADF and CF

Fig 1. Biomass response of A. domesticus to variation in diet. Biomass accumulation (mg i-1) over time
for populations of A. domesticus receiving Poultry Feed (PF), FoodWaste 1 (FW1), FoodWaste 2 (FW2),
Crop Residue 1 (CR1), or Crop Residue 2 (CR2) diets (left hand axis), and harvested, fresh weight biomass
(g / 1.2 m2) for PF and FW1 treatments (right hand axis). Vertical lines represent the standard error of the
mean between the three replications per treatment.

doi:10.1371/journal.pone.0118785.g001
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concentrations are commonly reported metrics for a variety of organic substrates, the feed quality
model reported here may be useful in determining the potential of a particular organic side-stream
to serve as a feed source for crickets. However, further work on a wider array of substrates is needed
to validate this conclusion, particularly in the feed quality range between 0.37 (FW1) and 0.86 (PF).
For example, Ramos-Elorduy et al. [28] fed yellowmealworms (Tenebrio molitor (L.) [Coleoptera:
Tenebrionidae]) 5 diets that would have had a feed quality range of 0.35–1.09 using the index re-
ported here. However, in that study there was not a clear, linear biomass response as food quality

Fig 2. The effect of feed quality on the biomass response of A. domesticus. Depicts the relationship
between feed quality and the biomass response of A. domesticus populations at 30 days after hatching,
where feed quality is characterized by the proportion of nitrogen (N) to acid detergent fiber content (ADF) plus
the proportional crude fat content (CF) [y = (N/ADF) + CF] in the feed substrate treatments (p = 0.02;
R2 = 0.96). Vertical lines represent the standard error of the mean between the three replications per
treatment. For ANOVA see Table 2. See [36] for explanation of terms.

doi:10.1371/journal.pone.0118785.g002

Table 2. ANOVA for the regression depicted in Fig. 2.

MSE F-value p-value

intercept — — 0.02

N 33708 232 <0.001

N / ADF 13689 94 <0.001

CF 2215 15 <0.01

residuals 146 — —-

The mg i-1 of A. domesticus at 30 days after hatching is explained (p = 0.02; R2 = 0.96) by the ratio

of nitrogen (N) to acid detergent fiber content (ADF) plus the proportional crude fat content (CF),

[(N/ADF) + CF], in the feed substrate treatments. See [36] for explanation of terms.

doi:10.1371/journal.pone.0118785.t002

Crickets Are Not a Free Lunch

PLOS ONE | DOI:10.1371/journal.pone.0118785 April 15, 2015 7 / 12



increased. Yet, differences in species and experimental conditions probably factor into this discrep-
ancy. In that regard, the feed quality index reported here should be viewed as a preliminary model.

The feed conversion ratio (FCR) for the populations fed poultry feed (PF) was 1.47, when
using the entire fresh-weight cricket biomass as the output, and 1.84 under the assumption, re-
ported by Nakagaki et al. [8], that only 80% of the harvested cricket biomass is directly con-
sumable (Table 3). If the unconsumed feed that remained after harvest were subtracted from
the total input biomass, the FCRs would improve to 1.34 and 1.68 for 100% and 80% of the har-
vested cricket biomass, respectively. These FCRs are higher (less efficient) than the 1.09 and
1.36 average FCRs (at 100% and 80% harvested biomass, respectively) reported by Nakagaki
et al. [8] for A. domesticus populations fed four diets, one of which was a poultry starter diet.
However, in addition to differences in the constitution of feed substrates, the population size
and density were not comparable between the two experiments. Nakagaki et al. [8] developed
FCR estimates from populations of 10 individuals at a density of 1 individual per 14.4cm2. In
our study, the population in the PF treatment was approximately 32,900 individuals with a
density of 1 individual per 5.25 cm2. Although this density exceeds the minimum 2.5cm2 per
individual reported by Patton [39], it is far more crowded than the populations measured by
Nakagaki et al. [8]. In addition, when rearing populations in a large-scale environment, it is
likely that the structure of the environment will result in greater metabolic costs per individual
(e.g., average distance required to procure food and water is greater). Finally, although the
mean temperature (29.0 ± 2.1 SD °C) and % relative humidity (67.2 ± 14.7 SD) align with re-
ported optimums for A. domesticus, the variability of these factors at the greenhouse scale is
likely to have been higher than within a laboratory setting, where previous work was con-
ducted. Thus, greater metabolic costs may have been incurred [40].

For the FW1 treatment, the FCR was 1.91 for 100% and 2.39 for 80% of the harvested bio-
mass (Table 3). If only the consumed portions of the FW1 treatment were considered, the FCRs
would be reduced to 1.82 and 2.28 for 100% and 80% of harvested biomass. These FCRs are
slightly higher than those reported by Collavo et al. [17] (1.69 for 100% and 2.12 for 80% of har-
vested biomass) for A. domesticus populations fed a “human refuse diet” that consisted of fruit
and vegetables peels (34%), rice and pasta (27%), pork and beef meat (11%), bread (11%), cheese
skins (11%) and yolk (6%). However, the feed quality and the population size and density dif-
fered in these cases as well. The MC (71.9 ± 0.4 SD %) and protein content (15.8 ± 0.6 SD %)
did not differ between the PF and FW1 treatments and were also in agreement with the range of
estimates for these parameters reported in Collavo et al. [17] and Nakagaki, et al. [8].

Table 3. Comparative efficiencies of crickets and selected livestock.

A. domesticus Carp1 Chicken Pork1 Beef1

PF FW1

Feed conversion (kg dry feed / kg live weight) 1.3 1.8 1.5 1.72–2.31 5.9 12.7

Feed conversion (kg dry feed / kg edible weight) 1.73 2.33 2.3 2.44–4.21 10.7 31.7

Protein content (% of edible weight) 16 16 18 201 14 15

Protein conversion efficiency (%) 35 23 30 334–251 13 5

Feed conversion ratios, protein content, and protein conversion efficiency for A. domesticus in the Poultry Feed-PF and Food Waste 1-FW1 treatments as

well as for carp, chicken, pork and beef.

1. Smil [42].

2. Feddes et al. [43].

3. Using 80% edible portion, as in Nakagaki et al. [8].

4. Using 70% dressing percentage (harvestable portion) [44] instead of 55% used by Smil [42] and the feed conversion reported by Feddes et al. [43].

doi:10.1371/journal.pone.0118785.t003
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It is clear that the biomass response of cricket populations depends, in large part, on the qual-
ity of their diet, which has important implications for the sustainability of crickets as an alterna-
tive source of protein. The ecological costs of grain-based protein production systems are largely
embedded in the production of the grains themselves. For example, Oonincx et al. [18] reported
that direct greenhouse gas emission from crickets, mealworms, and other insects were much
lower than from swine and beef. Yet, as a proportion of the global warming potential (GWP)
from the entire system of production, direct emissions frommealworms only totaled 0.29%,
whereas the mixed grain and carrot diet they consumed accounted for 56% of the total [4]. Simi-
larly, the GWP [41] and water footprint [19] for livestock production are largely determined by
the quantity of feed consumed. Therefore, the potential for crickets and other insects to be a less
resource-intensive form of dietary protein than conventional livestock will depend, in large part,
on their improved protein conversion efficiency (PCE) when fed a grain-based diet.

Crickets fed a grain-based diet resulted in a PCE of 35% (Table 3), which is slightly better
than the more efficient end of the range reported by other investigators [42–44] for broiler
chickens fed a similar diet (Table 3). While there is a theoretical potential for PCE gains by pro-
ducing crickets on grain-based diets when compared to broilers at the less efficient end of the
PCE range reported in Table 3, it should also be noted that mature systems of production, dis-
tribution and consumption are already in place for poultry production. These existing efficien-
cies as well as the reduced energy requirement for rearing poultry might help to explain the
discrepancy between the 1.1 kg CO2-eq associated with the production of 1 kg of poultry [41]
(the low end of a range extending to 5.5 kg CO2-eq / kg [45]) versus the 2.7 kg CO2-eq / kg re-
ported by Oonincx et al. [4] for mealworms with similar FCRs and energy requirements as
crickets. Even if global demand for crickets were to exist at a much greater scale than it does at
present, a novel protein source with little or no PCE improvement compared to chicken is un-
likely to justify the investments required to produce crickets at a scale of global significance.
Further, the same global forces driving the recent and projected increases in conventional live-
stock prices [16] will also increase the cost of crickets fed these same diets.

Although the crickets fed the FW1 diet were less productive per unit time and unit area
(Fig. 1) and had lower overall PCE than crickets fed the PF diet (Table 3), they may offer great-
er sustainability gains than crickets fed grains. In addition to avoiding the ecological costs em-
bodied in the grain itself, the conversion of an organic side-stream to dietary protein prevents
its deposition in environments with substantial nutrient loss pathways such as landfills and
large-scale composting operations [24][25][46]. Yet, whether the FCR and PCE reported for
the FW1 diet are sufficient to create an economically viable production system is an important
question that is not analyzed here. However, because the quality of the organic side-stream fac-
tored largely into whether the crickets could grow successfully, the implication is that higher
quality side-streams would be preferred for the production of crickets. As noted by Elferink
et al. [47], scalable organic side-streams are already being used in the production of pork, and a
scalable substrate that is high in protein content might share demand with swine and other
forms of livestock. Therefore, identifying regionally scalable waste substrates of sufficient quali-
ty to produce crickets that have no direct competition from existing protein production sys-
tems might be the most promising path for producing crickets economically, with minimal
ecological impact, and at a scale of relevance to the global protein supply.

Conclusion
Although it has been suggested that crickets reared for human or livestock consumption may
result in a more sustainable supply of protein, this study finds that such conclusions will de-
pend, in large part, on what the crickets are fed and which systems of livestock production they
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are compared to. When fed grain-based diets at a scale of economic relevance, populations of
crickets in this study showed little improvement in PCE compared to broiler chickens fed simi-
lar diets. When fed processed, organic side-streams of relatively high quality, cricket popula-
tions achieved a harvestable size. Yet, whether crickets could be raised economically on
substrates of similar quality and level of processing requires further analysis. The unprocessed
and lower-quality organic side-streams tested in this study could not support adequate growth
and survival of cricket populations. Therefore, the potential for crickets to supplement the
global supply of dietary protein appears to be more limited than has been recently suggested.
However, the feed quality index reported here may be useful in identifying regionally specific
organic side-streams with the potential to support the scalable cultivation of crickets.

It should be noted that crickets are but one of multiple insect species with potential for aug-
menting the global supply of protein by capturing organic side-streams and/or converting feed
to protein more efficiently than conventional livestock [2][3]. It is possible that other species,
such as black soldier fly (Hermetia illucens (L.) [Diptera: Stratiomyidae]) are better suited to
the bioconversion of low-quality organic side-streams to dietary protein [1][6]. Nevertheless,
champions of cultivating insects as a sustainable form of protein should recognize that the effi-
ciency of any insect production system and, therefore, its protein contribution and ecological
impact, will depend on the quality of the insect diet.

In order for insect cultivation to sustainably augment the global supply of protein, more
work is needed to identify species and design processes that capture protein from scalable, low-
value organic side-streams, which are not currently consumed by conventional livestock.
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